首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   1篇
测绘学   4篇
大气科学   10篇
地球物理   20篇
地质学   25篇
海洋学   4篇
天文学   11篇
综合类   1篇
自然地理   6篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   7篇
  2010年   2篇
  2009年   11篇
  2008年   3篇
  2007年   11篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   5篇
  1974年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
31.
In 1998 the EXPORT team monitored microlensing event light curves using a charge-coupled device (CCD) camera on the IAC 0.8-m telescope on Tenerife to evaluate the prospect of using northern telescopes to find microlens anomalies that reveal planets orbiting the lens stars. The high airmass and more limited time available for observations of Galactic bulge sources make a northern site less favourable for microlensing planet searches. However, there are potentially a large number of northern 1-m class telescopes that could devote a few hours per night to monitor ongoing microlensing events. Our IAC observations indicate that accuracies sufficient to detect planets can be achieved despite the higher airmass.  相似文献   
32.
Since the mid-1990s, the aim of keeping climate change within 2?°C has become firmly entrenched in policy discourses. In the past few years, the likelihood of achieving it has been increasingly called into question. The debate around what to do with a target that seems less and less achievable is, however, only just beginning. As the UN commences a two-year review of the 2?°C target, this article moves beyond the somewhat binary debates about whether or not it should or will be met, in order to analyse more fully some of the alternative options that have been identified but not fully explored in the existing literature. For the first time, uncertainties, risks, and opportunities associated with four such options are identified and synthesized from the literature. The analysis finds that the significant risks and uncertainties associated with some options may encourage decision makers to recommit to the 2?°C target as the least unattractive course of action.  相似文献   
33.
Because the ongoing discussion about the reliability of solid state cross polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy still leaves uncertainty with respect to its usefulness in organic geochemistry, the present work provides a brief introduction into the basic principles of this technique and gives some explanation about the potential source of non-quantitative results. In addition, relaxation data are supplied which are necessary for the correct adjustment of NMR acquisition parameters. High contents of paramagnetics or moisture indeed affect the CP dynamics, complicating quantification of solid state NMR data obtained with a standard protocol. Whereas the latter can be avoided by carefully drying the sample, the first is often circumvented by demineralization with hydrofluoric acid (HF). Although this can yield considerable organic matter loss, the given examples demonstrate that differences in the intensity distribution of the spectra before and after HF treatment are most likely due to a selective alteration of the relaxation kinetics of protons closely interacting with paramagnetics. It is further shown that single pulse excitation does not necessarily provide quantitative data, since some geopolymers (e.g. cellulose) relax extremely slowly. At high magnetic fields and low spinning speeds, spinning side bands can overlap with relevant signals and obscure the intensity distribution. At spinning speeds >6 kHz, the range of the correct Hartmann-Hahn match is reduced, resulting in a preferential intensity loss of weakly coupling carbons which can be avoided by the application of special pulse sequences. In principal, the acquisition of quantitative CPMAS NMR data from geochemical samples is possible, although this often requires an in depth analysis of the relaxation parameters. Further, the latter also represents a powerful tool for the identification of geochemical compounds by providing additional information about their physical status and their spatial relationships to each other.  相似文献   
34.
GOCE: precise orbit determination for the entire mission   总被引:4,自引:3,他引:1  
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was the first Earth explorer core mission of the European Space Agency. It was launched on March 17, 2009 into a Sun-synchronous dusk-dawn orbit and re-entered into the Earth’s atmosphere on November 11, 2013. The satellite altitude was between 255 and 225 km for the measurement phases. The European GOCE Gravity consortium is responsible for the Level 1b to Level 2 data processing in the frame of the GOCE High-level processing facility (HPF). The Precise Science Orbit (PSO) is one Level 2 product, which was produced under the responsibility of the Astronomical Institute of the University of Bern within the HPF. This PSO product has been continuously delivered during the entire mission. Regular checks guaranteed a high consistency and quality of the orbits. A correlation between solar activity, GPS data availability and quality of the orbits was found. The accuracy of the kinematic orbit primarily suffers from this. Improvements in modeling the range corrections at the retro-reflector array for the SLR measurements were made and implemented in the independent SLR validation for the GOCE PSO products. The satellite laser ranging (SLR) validation finally states an orbit accuracy of 2.42 cm for the kinematic and 1.84 cm for the reduced-dynamic orbits over the entire mission. The common-mode accelerations from the GOCE gradiometer were not used for the official PSO product, but in addition to the operational HPF work a study was performed to investigate to which extent common-mode accelerations improve the reduced-dynamic orbit determination results. The accelerometer data may be used to derive realistic constraints for the empirical accelerations estimated for the reduced-dynamic orbit determination, which already improves the orbit quality. On top of that the accelerometer data may further improve the orbit quality if realistic constraints and state-of-the-art background models such as gravity field and ocean tide models are used for the reduced-dynamic orbit determination.  相似文献   
35.
The chemical composition of a planetary atmosphere plays an important role for atmospheric structure, stability, and evolution. Potentially complex interactions between chemical species do not often allow for an easy understanding of the underlying chemical mechanisms governing the atmospheric composition. In particular, trace species can affect the abundance of major species by acting in catalytic cycles. On Mars, such cycles even control the abundance of its main atmospheric constituent CO2. The identification of catalytic cycles (or more generally chemical pathways) by hand is quite demanding. Hence, the application of computer algorithms is beneficial in order to analyze complex chemical reaction networks. Here, we have performed the first automated quantified chemical pathways analysis of the Martian atmosphere with respect to CO2-production in a given reaction system. For this, we applied the Pathway Analysis Program (PAP) to output data from the Caltech/JPL photochemical Mars model. All dominant chemical pathways directly related to the global CO2-production have been quantified as a function of height up to 86 km. We quantitatively show that CO2-production is dominated by chemical pathways involving HOx and Ox. In addition, we find that NOx in combination with HOx and Ox exhibits a non-negligible contribution to CO2-production, especially in Mars’ lower atmosphere. This study reveals that only a small number of chemical pathways contribute significantly to the atmospheric abundance of CO2 on Mars; their contributions to CO2-production vary considerably with altitude. This analysis also endorses the importance of transport processes in governing CO2-stability in the Martian atmosphere. Lastly, we identify a previously unknown chemical pathway involving HOx, Ox, and HO2-photodissociation, contributing 8% towards global CO2-production by chemical pathways using recommended up-to-date values for reaction rate coefficients.  相似文献   
36.
The influence of goose grazing intensity and open-topped chambers (OTCs) on near-surface quantities and qualities of soil organic carbon (SOC) was evaluated in wet and mesic ecosystems in Svalbard. This study followed up a field experiment carried out in 2003–05 (part of the project Fragility of Arctic Goose Habitat: Impacts of Land Use, Conservation and Elevated Temperatures). New measurements of soil CO2 effluxes, temperatures and water contents were regularly made from July to November 2007. SOC stocks were quantified, and the reactivity and composition measured by basal soil respiration (BSR) and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Results reveal variations in soil carbon cycling, with significant seasonal trends controlled by temperature, water content and snow. Experimental warming (OTCs) increased near-surface temperatures in the growing season, resulting in significantly higher CO2 effluxes. Different grazing intensities had no significant effects on observed soil respiration, but BSR rates at the mesic site (13–23 µg CO2 g soil-C−1 h−1) were highest with moderate grazing and lowest in the absence of grazing. A limited effect of grazing on microbial respiration is consistent with a lack of significant differences in SOC quantity and quality. NMR data show that the composition of A-horizon SOC is dominated by O-N-alkyl C and alkyl C groups, and less by carboxyl C and aromatic C groups: but again no marked variation in response to grazing was evident. It can be concluded that two years after a goose grazing experiment, SOC cycling was less than the natural variation within contrasting vegetation types.  相似文献   
37.
The microbial recalcitrance of char accumulated after vegetation fires was studied using pyrogenic organic material (PyOM) with increasing degrees of charring, produced from rye grass (Lolium perenne) and pine wood (Pinus sylvestris) at 350 °C under oxic conditions. Solid state 13C and 15N nuclear magnetic resonance (NMR) spectroscopy confirmed increasing aromaticity and the formation of heterocyclic N with prolonged charring. After mixing with a mineral soil, the PyOM was aerobically incubated for 48 days at 30 °C. To account for the input of fresh litter after a fire event, unburnt rye grass residue was added as a co-substrate. The grass-derived PyOM showed the greatest extent of C mineralisation. After 48 days incubation, up to 3.2% of the organic C (OC) was converted to CO2. More severe thermal alteration resulted in a decrease in the total C mineralisation to 2.5% of OC. In the pine-derived PyOM, only 0.7% and 0.5% of the initial C were mineralised. The co-substrate additions did not enhance PyOM mineralisation during initial degradation. 13C NMR spectroscopic analysis indicated structural changes during microbial degradation of the PyOM. Concomitant with a decrease in O-alkyl/alkyl-C, carboxyl/carbonyl C content increased, pointing to oxidation. Only the strongly thermally altered pine PyOM showed a reduction in aromaticity. The small C losses during the experiment indicated conversion of aryl C into other C groups. As revealed by the increase in carboxyl/carbonyl C, this conversion must have included the opening and partial oxidation of aromatic ring structures. Our study demonstrates that plant PyOM can be microbially attacked and mineralised at rates comparable to those for soil organic matter (SOM), so its role as a highly refractory SOM constituent may need re-evaluation.  相似文献   
38.
Change in environmental conditions with altitudinal gradients induces morpho-anatomical variations in plants that have been poorly documented in intertropical regions. Five species with three life forms, cryptophyte (Alchemilla procumbens, Geranium seemannii), hemicryptophyte (Acaena elongata, Lupinus montanus), and phanerophyte (Symphoricarpos microphyllus), distributed along an altitudinal gradient in the Sierra Nevada of central Mexico, were studied. The aims were to identify and evaluate their morpho-anatomical modifications under the hypothesis that the sizes of individuals and of their wood and leaf cell types decrease as elevation increases. Three individuals per species per site were collected at seven locations along the altitudinal gradient (2949-3952 m). Their morpho-anatomical characters were analyzed through multiple regression analyses. Elevation was the variable that best explained anatomical changes in the leaf and wood of the five species. Canopy density and potassium content in the soil also contributed to explain the variation in anatomical variables along the gradient. As elevation increased a bimodal pattern was observed in various anatomical characters as in the leaf width of A. elongata, A. procumbens and G. seemannii and in the vessel diameter of A. procumbens, G. seemannii, and L. montanus. Other features as the vessel diameter of A. elongata, the fiber length of S. microphyllus, and the ray width of A. elongata increased as the elevation increased. Anatomical traits have a tendency to decrease in size but just toward the end of the gradient, which is probably related to changes in canopy density. The plant response to the altitudinal gradient is more focused on anatomical adaptations than morphological variation; it is also species dependent.  相似文献   
39.
Reference Minerals for the Microanalysis of Light Elements   总被引:2,自引:0,他引:2  
The quantitative determination of light element concentrations in geological specimens represents a major analytical challenge as the electron probe is generally not suited to this task. With the development of new in situ analytical techniques, and in particular the increasing use of secondary ion mass spectrometry, the routine determination of Li, Be and B contents has become a realistic goal. However, a major obstacle to the development of this research field is the critical dependence of SIMS on the availability of well characterized, homogeneous reference materials that are closely matched in matrix (composition and structure) to the sample being studied. Here we report the first results from a suite of large, gem crystals which cover a broad spectrum of minerals in which light elements are major constituents. We have characterized these materials using both in situ and wet chemical techniques. The samples described here are intended for distribution to geochemical laboratories active in the study of light elements. Further work is needed before reference values for these materials can be finalized, but the availability of this suite of materials represents a major step toward the routine analysis of the light element contents of geological specimens.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号